
-AtA9 235 ADA (TRADEMARK) COMPILER VALIDATION SUNNRY AEPOT(U) i/i
NATIONAL COMPUTING CENTRE LTD MANCHESTER (ENGLAND)
38 APR 87

UNCLASSIFIED F/G 12/S UL

EIlllSlllEOl
EIIllhllI-llEEIhiEEEllllhIE
IEEE...'III

LU

I")(Wy WL4,tTION TfV- CHART

OIC FILE CO'

CV)

(Y) AVF Control Number: AVF-VSR-90502/110)
GO

Ada* COMPILER
VALIDATION SUMMARY REPORT

ALSYS
AlsyCOMP_014, V2.0

Host: SUN-3/160
Target: IBM 370/3084Q

Completion of On-Site Testing
30 April 1987

Prepared By
The National Computing Centre Limited

Oxford Road
Manchester

M1 7ED DTIC
UK E LECTEEC8 19870

Prepared For D 2 18
bAda Joint Program Office

United States Department of Defense
Washington, D.C.

USA

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

Apprnv;:n for piiblc re1ea";... . . i D ' i'il1 ' i ' i -j

VSECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) __________________

REPRT OCU ENTTIO PA E RAD IN4STRUCTIONS
REPOT O CUM NATI N PGEBEFORE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TTLE andubtite)5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 30 Apr.'87 to 30 Apr.'88

37?0/3084Q 6 PERFORMING ORG. REPORT NUMBER

7 AUTHRIs? 8. CONTRACT OR GRANT NUMBER(S)

The National Computing Centre Ltd.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

The National Computing Centre Ltd. AREA &. WORK UNIT NUMBERS

Oxford Rd., Manchester, M1 7ED, UK

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 30 Apr. '87
United States Department of Defense 13. NUIL UtFM
Washington, DC 203 01-3081ASD/SIOL 58

14. MONITORING AGENCY NAME & ADORE SS(lf different from Controlling Office) 15. SECURITY CLASS (of this report)
The National Computing Centre Ltd. UNCLASSIFIED

15a. RE~g8jFICAT1ON/DOWNGRAOING

I N/A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD uw 1473 EDITION OF I NOV 85 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAIGE (When Data EnteredO

.% ...

+Place NTIS form here+

................

Ada* Compiler Valid .tion Summary Report:

Compiler Name: AlsyCOMP_014, V2.0

Host: Target:
SUN-3/160 IBM 370 3084Q
under under
BSD UNIX MVS
4.2 3.2

Testing Completed 30 April 1987 using ACVC 1.8

This report has been reviewed and is approved.

The Naflonal Computing Centre Ltd
Vony Gwillim
Oxford Road
Manchester
M1 7ED

Ada Validation Office
Dr. John F. Kramer
Institute for Defense Analyses Accession For
Alexandria VA NTIS GRA&I

DTIC TAB El
Unannounced 0
Justification

By
Ada Joint Program Office Distribution/

*' Virginia L. Castor
Director Availability Codes
Department of Defense Avail and/or
Washington DC Dist Special

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and
Aconclusions of validation testing performed on the AlsyCOMP 014, V2.0

using Version 1.8 of the Ada* Compiler Validation Capability (ACVC).
The AlsyCOMP_014, V2.0 is hosted on a SUN-3/160 operating under BSD
UNIX 4.2. Programs processed by this compiler may be executed on a IBM
370 3084Q operating under MVS 3.2.

On-site testing was performed 27 April 1987 through 30 April 1987 at
ALSYS Ltd, Henley-on-Thames, under the direction of the National
Computing Centre (AVF), according to Ada Validation Organization (AVO)
policies and procedures. The AVF identified 2246 of the 2399 tests in
ACVC Version 1.8 to be processed during on-site testing of the
compiler. The 19 tests withdrawn at the time of validation testing,
as well as 134 executable tests that make use of floating-point
precision exceeding that supported by the implementation were not
processed. After the 2246 tests were processed, results for Class A,
C, D, or E tests were examined for correct execution. Compilation
listings for Class B tests were analyzed for correct diagnosis of
syntax and semantic errors. Compilation and link results of Class L
tests were analyzed for correct detection of errors. There were 36 of
the processed tests determined to be inapplicable; The remaining 2210
tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 14

Passed 105 269 352 243 161 97 134 262 121 32 217 217 2210

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 11 56 68 4 0 0 5 0 9 0 1 16 170

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity
to ANSI/MIL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

04!

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2

1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS. .. 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method .. 3-4
3.7.3 Test Site .. 3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APFENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard. This report
explains all technical terms used within it and thoroughly reports the
results of testing this compiler using the Ada Compiler Validation
Capability (ACVC). An Ada compiler must be implemented according to

% the Ada Standard and any implementation-dependent features must
conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented
that is not in the Standard.

Even though all validate;zda compilers conform to the Ada Standard,
it must be understod- that some differences do exist between
implementations. ...The Ada Standard permits some implementation
dependencies--for. example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from characteristics of particular operating systems, hardware,
or implementation strategies. All of the dependencies demonstrated
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is
to ensure conformity of the compiler to the Ada Standard by testing
that the compiler properly implements legal language constructs and
that it identifies and rejects illegal language constructs. The
testing also identifies behaviour that is implementation dependent but
permitted by the Ada Standard. Six classes of tests are used. These
tests are designed to perform checks at compile time, at link time,
and during execution. Ad' / .",

1-1

Io!

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on
an Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any unsupported language constructs
required by the Ada Standard.

" To determine that the implementation-dependent behaviour is
allowed by the Ada Standard

Testing of this compiler was conducted by NCC under the direction of
the AVF according to policies and procedures established by the Ada
Validation Organisation (AVO). On-site testing was conducted from
27 April 1987 through 30 April 1987 at ALSYS Ltd, Henley-on- Thames.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the
United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. 552). The results of this validation
apply only to the computers, operating systems, and compiler versions
identified in this report.

The organisations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented.
Copies of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

* Ada Validation Facility
The National Computing Centre Ltd
Oxford Road
Manchester
M1 7ED
United Kingdom

1-2

INTRODUCTION

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures,MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementer's Guide,
SofTech, Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The National Computing Centre Ltd. In the context of
this report, the AVF is responsible for conducting
compiler validations according to established policies
and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

1-3

I

INTRODUCTION

Host The computer on which the compiler resides.

Inapplicable A test that uses features of the language that a compiler
test is not required to support or may legitimately support in

a way other than the one expected by the test.

Passed test A test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In
the context of this report, the term is used to designate
a single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check
conformity to test the Ada language specification. A
test may be incorrect because it has an invalid test
objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully
compiled and executed. However, no checks are performed during
execution to see if the test objective has been met. For example, a
Class A test checks that reserved words of another language (other
than those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if no
errors are detected at compile time and the program executes to
produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

1-4

INTRODUCTION

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when
it is executed.

Class D tests check the compilation and execution capabilities of a
compiler. Since there are no requirements placed on a compiler by the
Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be
a conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully,
it is self-checking and produces a PASSED or FAILED message during
execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during
compilation. Therefore, a Class E test is passed by a compiler if it
is compiled successfully and executes to produce a PASSED message, or
if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests report
PASSED, FAILED, or NOT APPLICABLE results. It also provides a set of
identity functions used to defeat some compiler optimization
allowed by the Ada Standard that would circumvent a test objective.
The procedure CHECK FILE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of these units is checked by a set of
executable tests. These tests produce messages that are examined to
verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

-1-54.

J..

INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55
characters, contain lines with a maximum length of 72 characters, use
small numeric values, and place features that may not be supported by
all implementations in separate tests. However, some tests contain
values that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard either meeting the pass
criteria given for the test or by showing that the test is
inapplicable to the implementation. Any test that was determined to
contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of validation are
given in Appendix D.

A,

61-6
1.A

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: AlsyCOMP_014, V2.0

ACVC Version: 1.8

Certification Expiration Date: DD Month 1988

Host Computer:

Machine : SUN-3/160

Operating System: BSD UNIX
4.2

Memory Size: 6 M

Target Computer:

Machine : IBM 370 3084Q

Operating System: MVS
3.2

Memory Size: 2 M region

Communications Network: Magnetic tape was used for the
transfer of executable programs
from nost to target.

WO-

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behaviour of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as
subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative
part. (See tests D55A03A..H (8 tests), D56001B, D64005E..G (3
tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation does not reject such calculations and
processes them correctly. (See tests D4AO02A, D4AO02B,
D4AO04A, and D4AO04B.)

. Predefined types.

.. This implementation supports the additional predefined types
SHORT INTEGER, SHORT FLOAT, and LONG FLOAT in the package
STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERIC ERROR or CONSTRAINT ERROR during execution.

S-This implementation raises NUMERIC-ERROR during execution.
(See test E24101A.)

Array Types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/ or SYSTEM.MAXINT.

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See
test C52103X.)

2-2

O.,

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR v.hen the array type is declared. (See
test E52103Y.)

In assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
In assigning two-dimensional array types, the expression does
not appear to be evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible
discriminant constraint. This implementation accepts such
subtype indications during compilation. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expressionts subtype is compatible with the target's subtype.
(See test C52013A.)

Aggregates.

* In the e~aluation of a multi-dimensional aggregate, all
choices appear to be evaluated before checking against the
index type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates,
all choicas are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised
if a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)

2-3

;oAI
.4. .

CONFIGURATION INFORMATION

Functions

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in
the same immediate scope, or it may reject the function
declaration. If it accepts the function declarations, the use
of the enumeration literal's identifier denotes the function.
This implementation rejects the declaration,. (See test
E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version
1.8 of the ACVC, they are used in testing other language
features. This implementation rejects 'SIZE and 'STORAGE SIZE
for tasks, 'STORAGE SIZE for collections, and 'SMALL clauses.
Enumeration representation clauses appear not to be supported.
(See tests C55B16A, C87B62A, C87B62B, C87B62C, and BCI002A.)

Pragmas.

The pragma INLINE is not supported for procedures. The pragma

INLINE is not supported for functions. (See tests CA3004E and
CA3004F.)

Input/Output.

The package SEQUENTIAL_10 can be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults, however, USE ERROR will be raised if 10 operations
are attempted. (See tests AE2101C, AE2101H, CE2201D, CE2201E,
and CE2401D.)

An existing text file can be opened in OUTFILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE3102C.)

Only one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A.E (5 tests).)

Only one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See
tests CE2107A..F (6 tests).)

Only one internal file can be associated with each

2-4

.V.

CONFIGURATION INFORMATION

external file for direct I/O for both reading and writing.
(See tests CE2107A..F (6 tests).)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and
CE2108C.)

Generics.

Generic subprogram bodies can only be compiled in separate
compilations provided that no instantiations of the
corresponding generic occur prior to the compilation of the
generic body. (See test CA2009F.)

Generic package bodies can only be compiled in separate
compilations provided that no instantiations of the
corresponding generic occur prior to the compilation of the
generic body. (See tests CA2009C and BC3205D.)

-I

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing
of AlsyCOMP_014,V2.0 was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation.
The AVF determined that 170 tests were inapplicable to this
implementation, and that the 2210 applicable tests were passed by the
implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 68 862 1208 17 11 44 2210

Failed 0 0 0 0 0 0 0

Inapplicable 1 5 160 0 2 2 170

9 Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

oNO

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER

2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 105 269 352 243 161 97 134 262 121 32 217 217 2210

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 11 56 68 4 0 0 5 0 9 0 1 16 170

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the
time of this validation:

C32114A C41404A B74101B
B332C3C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was
withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all corpilers because they make use of
features that a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. For this validation attempt, 170
tests were inapplicable for the reasons indicated:

. C34001E, B52004D, B55B09C, and C55B07A use LONGINTEGER which is
not supported by this compiler.

" C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by this
compiler.

3-2

TEST INFORMATION

• B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

BA2001E requires that duplicate names of subunits with a common
ancestor be detected at compilation-time. This compiler correctly
detects the error at link-time, and the AVO rules that such
behaviour is acceptable.

• C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by

this new definition in this implementFation and the test cannot be

executed since the package REPORT is dependent on the package

TEXT_10.

. C87B62A..C (3 tests) use length clauses which are not supported by

this compiler. The length clause is rejected during compilation.

. CA2009C, CA2009F, and BC3205D compile generic subunits in separate
compilation files. Separate compilation of generic specifications
and bodies is not supported by this compiler when instantiations
precede the generic bodies.

" CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

. CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

• AE2101H, CE2401D use instantiation of package DIRECT__10 with
unconstrained array types which is not supported by this compiler.

" CE2107A..F (6 tests), CE2110B, CE3111A..E (5 tests), CE3114B and
CE3115A attempt to associate more than one external file with the

same internal file, which is not supported by this implementation.

The following 134 tests make use of floating-point precision that
exceeds the maximum of 18 supported by the implementation:

Z241 .3O.Y '1 tests)
C357050..Y (11 tests)
C357060..Y (11 tests)
C357070..Y (11 tests)
C357080..Y (11 tests)
C35802O..Y (11 tests)
C452410..Y (11 tests)

C453210..Y (11 tests)
C454210..Y (11 tests)

C454240..Y (11 tests)

C455210..Z (12 tests)

C456210..Z (12 tests)

3-3

04

TEST INFORMATION
3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B
test because of compiler error recovery, then the test is split into a
set of smaller tests that contain the undetected errors. These splits
are then compiled and examined. The splitting process continues until
all errors are detected by the compiler or until there is exactly one
error per split. Any Class A, Class C, or Class E test that cannot be
compiled and executed because of its size is split into a set of
smaller subsets that can be processed.

Splits were required for 15 Class B tests.

B26005A
B32202A B45102A B95069A
B32202B B61012A B95069B
B32202C B62001B
B33001A B62001C
B37004A B62001D
B43201D B91004A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8
produced by AlsyCOMP_014,V2.0 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behaviour on all inapplicable tests.

3.7.2 Test Method

Testing of AlsyCOMP_014,V2.0 using ACVC Version 1.8 was conducted on-
site by a validation team from the AVF. The configuration consisted
of a SUN-3/160 operating under BSD UNIX 4.2, and a IBM 370 3084Q

* target operating under MVS,V3.2. The host and target computers were
linked via magnetic tape.
A magne*ic tape containing all tests w.as takea on-site by the

validation team for processing. The magnetic tape contained tests
that make use of implementation-specific values were customized
before being written to the magnetic tape. Tests requiring splits
during the prevalidation testing were not included in their split form
on the magnetic tape. The contents of the magnetic tape were loaded
first onto a VAX 750 computer, where the required splits were
performed using the VAX editor (EDT) using prepared command scripts.
The processed source files were then transferred to the host computer
via an Ethernet connection.

3-4

%"i.

TEST INFORMATION

After the test files were loaded to disk, the full set of tests was
compiled and linked on the SUN-3/160, and all executable tests were
run on the IBM 370 3084Q. Object files were bound on the host
computer and bound object modules were transferred to the target
computer via magnetic tape. Bound object modules were linked on the
target computer and run. Results were transferred to the host
computer via a data-link using SNA protocol and printed from a VAX 750
connected to the host computer via Ethernet.

The compiler was tested using command scripts provided by ALSYS Ltd
and reviewed by the validation team.

Tests were compiled, linked and executed (as appropriate) using a
single host computer and a single target computer. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at AVF. The listings examined on-site by the validation team
were also archived.

3.7.3 Test Site

The validation team arrived at ALSYS Ltd, Henley-on-Thames on 27 April
1987 and departed after testing was completed on 30 April 1987.

, 3'' 3-5
4! V

APPENDIX A

COMPLIANCE STATEMENT

ALSYS Ltd has submitted the following
compliance statement concerning the
AlsyCOMP_014,V2.0.

A-i
d.

COMPLIANCE STATEMENT

Compliance Statement

:a e Configuration:

Cz~piler: AlsyCOMP 014, V2.0

:est Suite: Ada* Compiler Validation Capability, Version 1.8

Host Computer:

Machine: SUN-3/160

Operating System: BSD UNIX

4.2

Target Computer:

Machine: IBM 370 3084Q

Operating System: MVS
3.2

Communications Network: Magnetic tape was used for the
transfer of executable programs
from host to target

ALSYS Ltd. has made no deliberate extensions to the Ada language

standard.

ALSYS Ltd. agrees to the public disclosure of this report.

ALSYS Ltd. agrees to comply with the Ada trademark policy, as
defined y the Ada Joint Program Office.

4I

Date: _ _ / _ _ _

ALSYS Ltd\-
:.! L J Jordan
Marketing Director

**Ada is registered trademark of the United States Government
,ra ,oinr erogram Orrice).

A-2

/m

R APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation classes. The
implementation-dependent characteristics of the AlsyCOMP 014, V2.0 are
described in the following sections which discuss topics one through
eight as stated in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A). The implementation-specific portions of the
package STANDARD are also included in this appendix.

Package STANDARD is

type INTEGER is -2_147_483_648 .. 2_147 483 647 ;
type SHORTINTEGER is range -32768 .. 32767

type FLOAT is digits 15 range -(1.0-2.0**-56)*2.0**252
(1.0-2.0**-56)*2.0**252;

type SHORTFLOAT is digits 6 range
-(1.0-2.0**-24)*2.0**252 .. (1.0-2.0**-24)*2.0**252

type LONGFLOAT is digits 18 range
-(i.O-2.0**-112)*2.0**252 .. (I.0-2.0**-i12)*2.0**252

type DURATION is delta 1.OE-4 range -86_400.0..86_400.0;

end STANDARD;

B-1

%A

Alsys IBM 370 Ada* Compiler

Appendix F

Implementation - Dependent Characteristics

Version 2.0

Alsys S.A.
29. Avenue de Versailles

78170 La Celle St. Cloud. France

Alsys, Inc.
1432 Main Street

Waltham. MA 02154. U.S.A.

Alsys Ltd.
Partridge House. Newtown Road

*,' Henley- on- Thames.
Oxfordshire RG9 1EN. U.K.

A!a !s a registered trademark of the U.S. Government, Ada Joint Program Offlice

..

5);

Copyright 1987 by Alsys

All rights reserved. No part of this document may be reproduced in
any form or by any means without permission in writing from Alsys.

Printed: April 1987

Als,.4 reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine
wheher such changes have been made.

.......

PREFACE

-, This -1, . 11! 3-0 .- ,da Comn pil 1/0r . i. F is for programmers. soft%%are
engineers, project managers, educators and students who want to develop an Ada

program for any IBM System 370 (30XX or 43XX) processor that runs MVS.

This appendix is a required part of the Reference .Vaneal for lt .4Wa Pro,,,ramming
La:gu ,-c, ANSI MIL-SrD 1815A, February 1983 (throughout this appendix,
citations in square brackets refer to this manual). it assumes that the user is already
familiar with the MVS operating system, and has access to the following IBM

-i documents:

OS, VS2 MVS Overview, GC28-0984

OS VS2 System Programming Library: Job Management, GC28-1303

OS'VS2 MVS JCL, GC28-1350

IBM System, 370: Principles of Operation, GA22-7000

IBM Svstem/370 System Summary, GA22-7001

J.

.1

04 ~ 4./st 1B.1 370 4 LII C(Mn:-110r. Arrt'/tdix F. i'cr \ oa 2.0

-1,dII-
. . .. ' ' V .'% .%f%

TABLE OF CONTENTS

APPENDIX F 1

I Implementation-Dependent Pragmas I
1.1 INTERFACE I

Calling Conventions 2
Parameter- Passing Conventions 3
Parameter Representations 3
Restrictions on Interfaced Subprograms 5

1.2 INTERFACE NAME 5
1.3 Other Pragmas 6

2 Implementation-Dependent Attributes 6

3 Specification of the Package SYSTEM 6

4 Restrictions on Representation Clauses 7

5 Conventions for Implementation-Generated Names 7

6 Address Clauses 7

7 Restrictions on Unchecked Conversions 8

8 Input-Output Packages 8
8.1 Specifying External Files 8

Files 8
FORM Parameter 9

8.2 Text Terminators 11
8.3 EBCDIC and ASCII 12
8.4 Package OSENV 21

9 Characteristics of Numeric Types
9.1 Integer Types
9.2 Floating Point Type Attributes 23

SHORT FLOAT 23
FLOAT
LONGFLOAT 24

9.3 AttriLute's of T.-pe D .URATION

1, 10 Other Implementation-Dependent Characteristics 24
10.1 Characteristics of the Heap 24

10.2 Characteristics of Tasks 25
Jft 10.3 Definition of a Main Program 25

10.4 Ordering of Compilation Units 25

I I Limitations 26
11.1 Compiler Limitations 26

41s I.s IB.1 3'0 Ada Compiler. .4ppendix F. l'ersion 2.0 ii

Appendix F

Implementation- Dependent Characteristics

This appendix summarises the inplementation-dependent characteristis of the Alsys
IBM 370 Ada Compiler.

The sections of this appendix are as follows:

1. The form, allowed places, and effect of every implementation-dependent
pragma.

2. The name and type of every implementation-dependent attribute.

3. The specification of the package SYSTEM.

4. The list of all restrictions on representation clauses.

5. The conventions used for any implementation-generated names denoting
implementation-dependent components.

6. The interpretation of expressions that appear in address clauses, including
those for interrupts.

7. Any restrictions on unchecked conversions.

8. Any implementation-dependent characteristics of the input-output
packages.

9. Characteristics of numeric types.

10. Other implementation-dependent characteristics.

11. Compiler limitations.

The name Ada Run-Time Executive refers to the run-time library routines provided
for all Ada programs. These routines implement the Ada heap, exceptions, tasking
contrel. and other utility fupctions.

1 Irnp!.mertation-Dpeardent Pragmas

*Ada programs can interface with subprograms written in assembler or other
languages through the use of the predefined pragma INTERFACE [13.9] and the
implementation-defined pragma INTERFACENAME.

1.1 INTERFACE

Pragma INTERFACE specifies the name of an interfaced subprogram and the name
of the programming language for which calling and parameter passing conventions

A4v. IBM 370 4da Compiler. Appendix F. fersion 2.0 1

I@4t

will be generated. Pragma INTERFACE takes the form specified in the Rfvronce

pragma INTERFACE (Ianguae _name..'ubpor,'iannh')I

Xhe[e

. la/zua..'e,'anmc, is the name of the other language %khose calling and
parameter passing conventions are to be used.

* ,t.'r , namie is the name used \%ithin the Ada program to refer to
the interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is
ASSEMBLER.

The language name used in the pragma INTERFACE does not necessarily correspond
to the language used to write the interfaced subprogram. It is used only to tell the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use. ASSEMBLER is used to refer to the standard
IBM 370 calling and parameter passing conventions. The programmer can use the
language name ASSEMBLER to interface Ada subprograms with subroutines written
in any language that follows the standard IBM 370 calling conventions.

Calling Conientions

The contents of all of the general purpose registers must be left unchanged by the
call, except register 0, which is used for returning results. On entry to the
subprogram, register 13 contains the address of a register save area provided by the
caller.

Registers 15 and 14 contain the entry point address and return address, respectively,
of the called subprogram.

An interfaced subprogram should have the following structure:

STM R14.R12,12(R13) -- save registers

- s .rogram bo3y

LM R14,R12,12(R13) -- restore registers

PR Ri4 -- return to cai,.r

Any registers which are altered by the execution of the subprogram should be saved
as the first action upon entry to the subprogram, using a single ST or STM
instruction. This enables the Ada Run-Time Executive to treat any interruption
occuring during the execution of the body of the subprogram as the implementation-
defined Ada exception SPURIOUS ERROR being raised at the point of call of the
subprogram. This exception is not visible outside the Ada Run-Time Executive. and
hence cannot be handled by the Ada program.

.41svs JB.If 3-0 .4da Compiler. Appendix F. I'er.sion 2.0 2
_4

_I

.'.. i. -

Parameter- Pa sing Coni entions

On cntr\ ., the subprogram. register I contains the address of' a parameter address
11,t t-ich \kord in this list is an address corresponding to a parameter. The last

ciJ in the list has its [,it 0 (sign bit) set.

Fur a,:tual parameters which are literal %alues. the address is that of a copy of the
'aIue of the parameter, for all other parameters it is the address of the parameter

u 1-c,:t. Interfaced subprograms ha ke no notion of parameter modes; hence
parameters %, hose addresses are passed are not protected from modification by the
,,ubpi ..gran e\en though they may be formally declared to be of' mode in.

No consistency checking is performed between the subprogram parameters declared
in Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer's responsibility to ensure correct access to the parameters.

SParameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram.

Ineo-er Types [3.5.4]

Ada integer types occupy 16 (SHORT INTEGER) or 32 (INTEGER) bits. An
INTEGER subtype falling within the range of SHORTINTEGER is implemented as
a SHORT INTEGER in 16 bits.

Enumeration Types [3.5.1]

Va!ues of 7n Ada enumeration type are represented intcrr.ally as unsigne vaLes
representing their position in the list of enumeration literals defining the type. The
first literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits, those with

more than 256 elements in 16 bits. The maximum number of values an enumeration
type can include is 65536 (2*16).
"

The ADA predefined type CHARACTER [3.5.2] is represented in 8 bits, using the
standard ASCII codes [C].

Flcatinc Point Types 3.5.7, 3.5.8]

Ada floating-point values occupy 32 (SHORT FLOAT), 64 (FLOAT) or 128
' (LONG FLOAT) bits, and are held in IBM 370 (short, long or extended floating

point) format.

.4sv s [B.it 370 4da Compiler. .prcndtx F. 'cr,siom 2.0 3

'A -., -Z " 41.(.
5

Fixed Point Types [3.5.9. 3.5.10]

Ada fixed-point types are managed by the Compiler as the product of a signed
w'w:,,a and a constant %nall. The mantissa is implemented as a 16 or 32 bit

integer %alue. Small is a compile-time quantity \khich is the po\4er of t%%o equal or
immediately inferior to the delta specified in the declaration of the type.

The attribute MANTISSA is defined as the smallest number such that:

, ** MANTISSA >= max (abs (upp.: _bound). abs (lo\\er bound)) , %mall

Fhe size of a fixed point t\ pe is:

MANTISSA Size

1 15 16 bits
16.. 31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

Q .Access Types [3.8]

Values of access types are represented internally by the 31-bit address of th-.
designated object. Note that bit 0 (the sign bit) of the 32-bit word holding a non-
null access value may be set or clear, depending upon certain conventions used by
the Ada Run-Time Executive, and must be preserved. The value zero is used to
represent null.

, Arra" Tvoes [3.61

Ada arrays are passed by reference; the value passed is the address of the first
eiement of the array. V',nen an array is passed as a parameter to an interfaced
subprogram. the usual consistency checking between the array bounds declared in the
calling program and the subprogram is not enforced. It is the programmer's
responsibility to ensure that the subprogram does not violate the bounds of the array.

Values of the predefined type STRING [3.6.3] are arrays, and are passed in the same
v. a: the address of the fi-st character in the string is passed. Elements of a string
are represented in 8 bits, using the standard ASCII codes.

Record Tyes [3.7

S,.e Ada records are passed by reference, by passing the address of the first component
of the record. However, unlike arrays, the individual components of a record may
be reordered internally by the Ada compiler. Moreover, if a record contains
discriminants or components having a dynamic size, implicit components may be
added to the record. Thus the exact internal structure of the record in memory may
not be inferred directly from its Ada declaration.

41.sYs IB. 370 ..ida Conmp'er. Appendix F. l'er.sion 2.0 4

1- S 4
~* ,-

Restrictions on Interfaced subprograms

i'he Ada Run-Time E,,e,:uti'e uses the SPIE (S\C 14) macro. Interfaced
,ul-programs should a\oid u-,e of this failito. or else resture interruption pro,:e sing
to its ori.inal state before returning to the Ada program. Failure to d ,o ,na\ lead
to unpredictable results.

Similarl. . interfaced subprograms must not change the program mask in the Program
Status Wkord PSW) of the machine with .ut restoring it before returning.

1.2 INTERFACENAME

Pragma INTERFACENAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma
INTERFACE NAME is not used, then the two names are assumed to be identical.
This pragma takes the form

pragma INTERFACE NAME (subprogram name, string literal);

where

a suhprogram__name is the name used within the Ada program to refer to
the interfaced subprogram.

a string literal is the name by which the interfaced subprogram is referred
to at link-time.

The use of INTERFACE NAME is optional, and is not needed if a subprogram has
the same name in Ada as in the language of origin. It is useful, for example, if the
name of the subprogram in its original language contains characters that are not
permitted in Ada identifiers. Ada identifiers can contain only letters, digits and
underscores, whereas the IBM 370 linkage editor/loader allows external names to
contain other characters, e.g. the plus or minus sign. These characters can be
specified in the string_literal argument of the pragma INTERFACENAME.

The pragma INTERFACE-NAME is allowed at the same places of an Ada program
as the pragma INTERFACE [13.9]. However, the pragma INTERFACE NAME
must always occur after the pragma INTERFACE declaration for the interfaced

.subprogram.

In order to conform to the naming conventions of the IBM 370 linkage editor/loader.
the link-time name of an interfaced subprogram will be truncated to 8 characters
and converted to upper case.

The Ada Run-Time Executive contains several external identifiers. All such
0.. identifiers begin with the string "ALSYS". Accordingly, names prefixed by "ALSYS".

in any combination of upper and lower case, should be avoided by the user.

./

,A/sY.s IBX! 370 Ada Compiler. Appendix F. Version 2.0
e'i

'I,
_.

; I K.,Z A\1 I'l. I1' TA

: VMJI'LE ,VPIC' ! X INTE;ER) r,. INTE;LIf

. ' ('ESS SA I LE X INTE(;.E() r~irr. INT (;ER.

;r~qm;. INTERFACE iASSEMBLER, SAMI'LE DEVICE),

r.,,na INTERFACE (ASSEMBLER. PROCESS SAMPLE),

Sragra INTErFACE NAME (PROCESS SAMPLE, "PSAMPLE"),

A SAMP'LE DATA.

1.3 Other Pragmas

'o other implementation-dependent pragmas are supported in the current version of
this compiler.

2 Implementation-Dependent Attributesvs.
There are no implementation-dependent attributes.

3 Specification of the Package SYSTEM

package SYSTEM is

type NAME is (IBM_370);

SYSTEMNAME constant NAME := NA.ME'FIRST;
M IN INT constant -(2-31);

MAX INT constant :.*'31-1;

MEMORYSIZE constant 2**24;

1% type ADDRESS is range MIN_INT.. MAX_INT;

STORAGE_UNIT constAnt 8;

MAX DIGITS . constant 18;

-MA'-X MANTISSA : constant 31;

-: FINEDELTA constant 2#1.0#e-31;

TICK constant := 0.01;

NULL ADDRESS constant ADDRESS 0;

m subtype PRIORITY is INTEGER range I .. 10;

-- These subprograms are provided to perform

"- - READ/WRITE operations in memory.

generic

type ELEMENT_TYPE is private;

function FETCH (FROM : ADDRESS) return ELEMENTTYPE,

.. s IBm[370 Ada Compiler. Appendix F 'er.ston 2.0 6

@N

tvpe ELEMENT_TYPE iF priv:.,te

pr&ciure STORE (INTO ADDRESS, OB JECT ELEMENTTYPE:,

end SYSTEM,

The generic function FETCH may be used to read data objects frorm gi en addresses
in store. The generic procedure STORE may be used to write data objects to given
addresses in store.

4 Restrictions on Representation Clauses

Representation clauses 113.11 are not supported by this version of the Alsys IBM 370
Ada Compiler. Any program containing a representation clause is rejected at
compilation time. The pragma PACK [13.1] is also not supported. However. its
presence in a program does not in itself make the program illegal; the Compiler will
simply issue a warning message and ignore the pragma.

5 Conventions for Implementation-Generated Names

There are no implementation-generated names [13.4] in the current version of the
Als\s IBM 370 Ada Compiler.

*I

The following predefined library units cannot be recompiled:

Se ALSYS ADA RUNTIME
'- ALSYS BASIC 10

..I,%W^ ALSYS BINARY 10
ALSYS COMMON _O
ALSYS FILE MANAGEMENT
ALSYS-SYS--O
CALENDAR

4 DIRECT 10
EBCDIC
10_EXCEPTIONS
OS ENV

. SEQUENTIAL 10
STANDARD
S'V'STE\I
TEXT_10

iLCHEKED CONVERS!ON

UNCHECKED-DEALLOCATION

6 Address Clauses
'.jD

Address clauses [13-5] are not supported in this version of the Alsvs IBM 370 Ada
Compiler.

41,vs IB I 3-0 4du Conirilcr .4ppcndix F. Ic'rion 2.0

*,ii M

7 Restrictions on Unchecked Conversions

Unhecked conversions [13.10.2] are alloN ed only between tvpes which have the
same \alue for their 'SIZE attribute.

8 Input-Output Packages

The predefined input-output packages SEQUENTIAL 10 [14.2.3., DIRECT IO
[14.2.5], and TEXT 10 [14.3.10] are implemented as described in the Language
Reference Manual, as is the package 10 EXCEPTIONS [14.51. which specifies the
exceptions that can be raised by the predefined input-outpu: packages.

The package LOW LEVEL_10 [14.6], which is concerned with low-level machine-
dependent input-output, has not been implemented.

8.1 Specifying External Files

The NAME parameter supplied to the Ada procedure CREATE [14.2.1] must
represent an MVS dataset name (DSNAME). The NAME parameter supplied to the

* OPEN procedure [14.2.1] may represent a DSNAME or a DDNAME.

Files

An MVS dataset name as specified in the Ada NAME parameter may be given in
any of the following forms:

OPEN (F, NAME => "UNQUALIFIED.NAME", ...);

OPEN (F, NAME => "'FULLY.QUALIFIED.NAME", ...);

OPEN (F. NAME => "UNQUALIFIED.PDS (MEMBER)", ...);

OPEN (F, NAME => "'FULLY.QUALIFIED.PDS (MEMBER)'", ... ;

An unqualified name (not enclosed in apostrophes) is first prefixed by the name (if
any) given as the QUALIFIER parameter in the program PARM string when the
program is run.

The QUALIFIER parameter may be specified as in the following example:

.' TEP20 EXEC PGM=IEB73 PARM='QUAL!FIER(PAYROLL.ADA)'

,i A fully qualified name (enclosed in single quotes) is not so prefixed. The result of
the NAME function is always in the form of a fully qualified name, i.e. enclosed in
apostrophes.

Members of partitioned datasets are specified within parentheses.

The file name parameter may also be a DDNAME (see below) in the case of OPEN.

V 41sivs IBf 370 Ada Compiler. Appendix F. Version 2.0 8

.4
°&I.........o * ** % *.'

--------- -WM -w. V

FORM Parameter

The FORM parameter comprises a (possibly empty) set of attributes (the FORM
parameter may, of course, be gi\en as a null string [14.2.1]) formulated according to
the lexical rLles of [2], separated by commas. Attributes are comma-separated:
blanks may be inserted between lexical elements as desired. In the descriptions
below the meanings of natural, positive, etc., are as in Ada; attribute keywords
(represented in upper case) are identifiers [2.3] and as such may be specified without

regard to case.

USEERROR is raised if the FORM parameter is illegal.

The attributes are as follows:

File sharing attribute

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent
OPEN and CREATE calls which specify the same external file. If such rules are
violated or if a different file sharing attribute is specified in a later OPEN or
CREATE call, USE ERROR will be raised. The syntax is as follows:

NOTSHARED I SHARED => access mode

where

access mode::= READERS I SINGLE WRITER I ANY

A file sharing attribute of:

NOTSHARED

implies only one internal file may access the external file.

4 SHARED => READERS

imposes no restrictions on internal files of mode IN FILE. but prevents
any internal files of mode OUT FILE or INOUTFILE being associated
with the external file.

SHARED => SINGLEWRITER

is as SHARED => READERS, but in addition allows a single internal file
e of mode OUTFILE or INOUTFILE.

SHARED => ANY

places no restrictions on external file sharing.

The def-ult is SHARED => NOTSHARED.

Als.vs IB.Mf 3-0 Ada Comptcr. .4ppendix F. lVcrsion 2.0 9

0.. -U

• ,"'" 4.,' k " ":" ;" "4 ' ' "'

Record size attribute

13y default, records are output according to the following rules:

" for TEXT _O and SEQUENTIAL 10. %ariable-length record files
(RECFM = V).

. for DIRECT_10. fixed-length record files (RECFM = F).

In the case of DIRECT_10 for constrained types the record size is determined by
the size of the type with which the package is instantiated. The user can specify the
record size attribute to force the representation of the Ad. element in output records
of a given byte size. Of course, such a specified record size must not be smaller
than ELEMENT TYPE'SIZE / SYSTEM.STORAGEUNIT; DATAERROR will
be raised if this rule is violated.

There is just one case in which the record size attribute is mandatory, that of
DIRECT 10 for mode OUT FILE or INOUT FILE for unconstrained types. In
the absence of the record size attribute in this case, USE ERROR will be raised
(although the package may be instantiated without error).

If the record size attribute is specified, fixed-length records (RECFM = F) will be
generated.

In the case of TEXT 10, output lines will be padded to the requisite length with
S-spaces; this fact should be borne in mind when re-reading files generated using

TEXT_10 with the record size attribute set.

In the case of DIRECT _10 of unconstrained types, the length of each item precedes
the binary image of the item itself in the external file; it is held in 2 or 4 bytes
depending on the maximum size of the item.

The syntax of the record size attribute is as follows:

RECORDSIZE => natural

where natural is a size in bytes.

The default is

RECORDSiZE => ELEMENT TYPE'SIZE / SYSTEM.STORAGE UNIT

for DIRECT_10 of constrained types.

RECORD SIZE => 0

(meaning variable-length records) otherwise.

Carriage control

This attribute applies to TEXT_10 only, and is intended for files destined to be sent
to a printer.

Alsvs IBM 370 Ada Compiler. Appendix F. Version 2.0 10

i4

60

For a file of mode OUT__FILE, this attribute causes the output procedures of
TEXT 10 to place a carriage control character as the first character of every output
re,:ord: "1' (skip to channel I) if the record follows a page terminator, or blank (skip
to ne\t line) otherwise. Subsequent characters are output as normal as the result of
calls of the output subprograms of TEXT_10.

For a file of mode IN FILE, this attribute causes the input procedures of TEXT 10
to interpret the first character of each record as a carriage control character, as
described in the previous paragraph. Carriage control characters are not explicitly
returned as a result of an input subprogram, but will (for e, n:ple) affect the result
of ENDOFPAGE.

The user should naturally be careful to ensure the carriage control attribute of a file
of mode IN-FILE has the same value as that specified when creating the file.

The syntax of the carriage control attribute is as follows:

CARRIAGECONTROL => boolean

The default is CARRIAGECONTROL => FALSE.
0

DDNAME attribute

This attribute affects the semantics of the NAME parameter.

If the DDNAME attribute is specified, the NAME parameter is taken to be the name
of a DD statement which the user must have provided in the JCL to run the Ada
program.

CREATE will raise USEERROR if the DDNAME attribute is specified in its
*FORM parameter.

If DELETE is called for a file opened with the DDNAME attribute of the FORM
parameter having been specified, USEERROR will be raised, but the file will be

closed.

The syntax of the DDNAME attribute is as follows:

DDNAME => boolean

bT- defau!t is DDNAME => FALSE.

8.2 Text Terminators

Line terminators [14.3] are not implemented using a character, but are implied by the
end of physical record.

Page terminators [14.3] are implemented using the EBCDIC character OC
(hexadecimal).

.41.us IB.1f 370 ,4da Compiler. Appendix F. Version 2.0 11

S.

File terminators [14.3] are not implemented using a character, but are implied by the
end .r" ph\sical file.

The user should a'oid the explicit output of the character ASCII.FF [C). If the user
explicitly outputs the character ASCII.LF, this is treated as a call of NEW LINE• [14.3.4].

8.3 EBCDIC and ASCII

All 1/0 using TEXT _10 is performed using ASCIiVEBCDIC translation.
CHARACTER and STRING values are held internally in ASCII but represented in
external files in EBCDIC. For SEQUENTIAL 10 and DIRECT 10 no traihslation
takes place, and the external file contains a binary image of the internal
representation of the Ada element.

It should be noted that the EBCDIC character set is larger than the (7 bit) ASCII and
. . that the use of EBCDIC and ASCII control characters may not produce the desired

results when using TEXT_10 (the input and output of control characters is in any
case not defined by the Ada language [14.3]). Furthermore, the user is advised to
exercise caution in the use of BAR (I) and SHARP (#), which are part of the lexis of
Ada: if their use is prevented by translation between ASCII and EBCDIC, EXCLAM
(!) and COLON (:), respectively, should be used instead [2.10].

Various translation tables exist to translate between ASCII and EBCDIC. The
predefined package EBCDIC is provided to allow access to the translation facilities*access

used by TEXT_10 and OSENV.

The specification of this package is as follows:

package EBCDIC is

type EBCDICCHARACTER is

nul, -- O=Oh
soh, -- 1 =h

stx, -- 2 = 2h

etx, -- 3 = 3h

E_4,

ht, -- = 5h
E-6,

del, -- 7 = 7h

E_9,

EA,
,V:,-- 11 = CBh
np, -- 12 = OCh
cr, -- 13 = ODh
so, -- 14 = OEh
si, -- 15 = OFh
die, -- 16 = 10h
dcl, -- 17 = llh
dc2, -- 18 = 12h

A.svs IB.1! 370 Ada Compiler. Apendix F. 'ersion 2.0 12

cc3, -- 19 = 13h

E 14

ni, 21 = 15h
bs, -- 22 = 16h

E_17,

can, -- 24 = 18h

eni, -- 25 = 19h

E IA,

E 1B,

E IC,

gs, -- 29 = lDh

rs, -- 30 = lEh

us, -- 31 = lFh

E_20,

E_21,

fs. -- 34 = 22h

E_23,

E24,

E 25,

etb, -- 38 = 26h

esc, -- 39 = 27h

E_28,

E29,

E_2A,
E_2B,

£_-E2C,

enq, -- 45 = 2Dh

ack, -- 46 = 2Eh

bel, -- 47 = 2Fh

E-30,

E31,

syn, -- 50 = 32h

~E 35,
£_34,

E-35,
E_36,

eot, -- 55 = 37h

E_38,

E 39,

* .E_3A,

E3B,

dC4 -- 60 = 3Ch

nak, -- 61 = 3Dh

4 - -,-' 9 .--~, - 63 = 3F~h

sp -- 64 = 40h

E41,

% E_42,

£ 43,

E£44,
E_45,

E46,

.41vs IB.I 370 Ada Compiler. Appendix F, Version 2.0 13

• S .P% p. *1 , .

E_47,
E_48.
E -4-9,

E 4A,
'., -75 = 4Bh

-- 73 = 4Ch
T, -- 7= 4Dh

-- 78 = 4E!

-- 79 = 4Fh

-- 80 = SOH
E_51,

E_52,

E_53,
E_54,

E_55,
E_56,~E_57,

, E_58,
E_59,

-- 90 = 5Ah

S, -- 91 = 5Bh

-- 93 = 5Dh

-- 94 = 5Eh
-- 95 = 5Fh

-- 96=60h
-- 97 = 61h

E_62,

E_63,

E_64,
E_65,
E_66,

E_67.

E_68,
E-69,

E_6A,
1"', -- 107 = 6Bh

S'v', -- 108 = 6Ch
_, -- 109 = 6Dh

-', -- 110 = 6Eh

-- 111 = 6Fh

E_70,
E_71,
E_72,

E_73,

E_74,

E_75,

E_76,

E_77,
E_78,
... - 121 = 79h

--122 = 7Ah

Alsys IBM 370 Ada Compiler. Appendix F. Version 2.0 14

[4

--123 = 7Bh
-124 = 7Ch

- - 125 = 7Eh

-- 127 = 7Fh

E_80,

'a', -- 129 = Slh

V , --130 = 82h

'c", --131 = 83h

-d', --132 = 84h
le", --133 = 85h

T, --134 = 86h

g', -- 135 = 87h

--136 = 88h

--137 = 89h

ESA,

E_8B,
E_SC,
E_8D,
E_8E,

E_8F,

E_90,
--145 = 91h

'k' --146 = 92h

'1, --147 = 93h

--148 = 94h

-- 149 = 95h

-- 150 = 96h

p', -- 151 = 97h
'q', --152 = 98h
rl, --153 = 99h

E_9A,

E_9B,-J E_9C,

E_9D,

E_9E,

* E_9F,
E_AO,

_- '',--161 = 0Alh
[-"'s,--162 = 0A2h

t', --163 = OA3h

u. -- 164 = OA4h
-- 165 = OASh

w -- 166 = OA6h
'x', --167 = 0A7h
I ,Y, -- 168 = OASh
121, --169 = OA9h

EAA,
E_AB,

E_AC,
T. '--173 = OADh

EAE,

Alsys B.11 370 Ada Compiler, Appendix F. 'ersion 2.0 15

'!.- '

F AF,

F _ 14.

EB5,

EB7,
F 138,

£ B,

E BC,

111 -- 189 = 0BDh

E BE,

ET, -- 192 = C~h

'A ', -- 193 = OClh

'B', -- 194 = 0C2h
'C', --195 = 0C3h

T', -- 196 = 0C4h

'E', -- 197 = OC~h
F', -- 198 = 0C6h

'G'. -- 199 = OC7h

if 'H',--200 = OC8h

'1', -- 201 = OC9h

ECA,

ECB,

ECD,

E CE,
E _CF

--208 = ODOh

'.1',--209 = ODIh

'K', -- 210 = OD2h

'T.' -- 211 = OD3h

'M' -- 212 = OD4h

'N', -- 213 = OD~h

* ,--214 = OD6h

'P, -- 215 = OD~h

'Q', -- 216 = OD~h

R', -- 217 = ODgh

* FDB,
* FDC,

FDD,
EDE,

DF~ - -224 = OEOh

E El,
'S, -- 226 - OE2h

A/si's IBM~ 370 Ada Compiler. Appendix F. Version 2.0 16

-227 = 0E3h

U' 226~ = OE4h

2, 2 -9 = ESh

-- 230 = 0E6h

.X" -- 231 = CE~h

-- 232 = 0Ebh

-- 233 = OE~h
EEA.

EEB,

EEC,
EED.

EEE,

EEF,
'0', -- 240 = OFOh

'1'. -- 241 = OFlh
'2', -- 242 = OF2h
3' - -243 = OF3h

'4' -- 244 = OF4h
'5', -- 245 = OF5h

'6' -- 246 = OF6h

'7', -- 247 = OF7h
'8'. -- 248 = OF8h
'9', -- 249 = OF9h

EFA,

EFB,

EFC,
EFD,

EFE,

E_FF);

SEL constant EBCDICCHARACTER :=E_4;

RNL constant EBODICCHARACTER : E_6;

GE constant EBCDICCHIARACTER : E_8;
SPS :constant EBCDICCHARACTER: E_9;

RPT constant EBCDICCHARACTER : EA;
RES constant EBCDICCHARACTER: E_4;

ENP :constant EBCDICCHARACTER= E_4;

P OC constant EBCDICCHARACTER :=E-17;
CBS constant EBCDICCHARACTER: E lA;
Cul constant EBCDICCHARACTER:= E lB;

IFS :constant EBCDICCHARACTER= E IC;
DS : onstant EBCDICCHARACTER:= E-20;
SOS :constant EBCDICCHARACTER: E_21;
"-S :comitant EBCDIC CHARACTER:= E_23;

BYP :onstant EBCDICCHARACTER:= E_24;

INP :constant EBCDICCHARACTER:= E 24;

LF :constant EBCDICCHARACTER:= E-25;
SA :constant EBCDICCHARACTER:= E_28;

SFE :ccnst ant EBCDICCHARACTER:= E_29;

SM :constant EBCDICCHARACTER:= E_2A;
SW constant EBCDICCHARACTER := E2A;

CSP :constant EBCDICCHARACTER := E_2B;

A/YS Is BM 370 Ada Compiler. Appendix F, 1ersion 21.0 17

MFA constan, EBCDICCHARACTER E 2C;
IR :rnst.a!i EBCDICCHARACTER =E_33;

PP cciistanrt EBCDICCHARACTER E_34;

TRN constant EBCDICCHARACTER E 33;
NBS constant EBCDICCHARACTER =E_36;

SBS constant EBCDICCHARACTER E_38;
IT constant EBCDICCHIARACTER E-39;
RFF constant EBCDICCHARACTER E 3A;

CL'3 constant EBCDICCHARACTER E-3B3

RSP constant EBCDICCHARACTER E-41;

CENT constant EBODICCHARACTER E 4A;

SHY constant EBODICCHARACTER E CA;
HOOK constant EBCDICCHARACTER E CC;
FORK constant EBCDICCHARACTER: ECE;
NSP constant EBCDICCHARACTER: EEl;

CHAIR constant EBODICCHARACTER: EEC;

EQ constant EBODICCHARACTER= EFF;

E_0 constant EBCDICCHARACTER :=nul;

E_1 constant EBODICCHARACTER: soh;

E_2 constant EBCDICCHARACTER stx;
'aE_3 constant EBCDICCHARACTER etx;

E_5 constant EBCDICCHARACTER: ht;

E_7 constant EBCDICCHARACTER :=del;

EB constant EBODICCHARACTER: vt;

EC constant EBODICCHARACTER: np;
ED constant EBCDICCHARACTER: cr;

EE constant EBCDICCHARACTER: so;

E_-F constant EBCDIC_-CHARACTER:=si;

E_10 constant EBCDICCHARACTER: die;
E-11 constant EBCDICCHARACTER: dcl;

E_12 constant EBCDICCHARACTER: dc2;

E_13 constant EBCDICCHARACTER: dc3;

E-15 constant EBODICCHARACTER: nl;

E_16 constant EBCDICCHARACTER: bs;

E_18 cDorstant EBCDICCHARACTER: can;

E_19 constant EBCDICCHARACTER em;

E-11D constant EBCDICCHARACTER gs;

E-1E constant EBODICCHARACTER ra;

E IF constant EBCDICCHARACTER: us;

E 22 constant EBCDICCHARACTER: s

E5 E26 constant EBCDICCHARACTER etb;

E .7 c::-slzt EBCLV!C CHAIRACTER esc;

E_21 ccnstant EBCDICCHARACTER enq;

E_2E constant EBCDICCHARACTER ack;

E_2F7 constant EBCDICCHARACTER bel;

E_32 constant EBCDICCHARACTER syn;

E_37 constant EBCDICCHARACTER eot;

E_3C constant EBCDICCHARACTER dc4;

E_3D) constant EBCDICCHARACTER i=nak;

E_3F constant EBCDICCHARACTER =sub;

.. ls 1B.11 370)Ada Corsril'r. Appendix F, Tl(r.%ioh1 2.0 18

%@%

E_40 constant EBCDICCHARACTER- p

E_4B ccnstant EBODICCHARACTER

E_4C constant EI3CDICCHARACTER

E_4D constant EBCDICCHARACTER
E_4E constant EBCDICCHARACTER

V E_4F constant EBCDICCHAR.--CTER ''
E_50 constant EBCDICCHARACTER c

H_5A constant EBCDICCHARACTER:=T
ESB constant EBCDICCHARACTER: 'S;

E_5C constant EBCDICCHARACTER
E_!, constant EBCDICCHARACTER ')

E_5E constant EBODICCHARACTER:

HSF constant EBCDICCHARACTER :
E_60 constant EBODICCHARACTER:

E_61 constant EBCDICCHARACTER :
E_6B constant EBCDICCHARACTER:

E_6C constant EBODICCHARACTER:
E_6D constant EBCDICCHARACTER:_

E_6E constant EBCDICCHARACTER:

E_6F constant EBCDICCHARACTER:

E_79 constant EBCDICCHARACTER:..

E_7A constant EBCDICCHARACTER:
E_7B constant EBODICCHARACTER:

E_7C constant EBCDICCHARACTER:

E_7D constant EBODICCHARLACTER:..
*E_7E constant EBCDICCHARACTER:

E_7F constant EBCDICCHARACTER:
E_81 constant EBCDICCHARACTER:=''

E_82 constant EBCDICCHARACTER:=W

E_83 constant EBCDICCHARACTER: VC;
E_84 :constant EBCDICCHARACTER:=W

*E_85 cor'ctant EBCDICCHARACTER:=Y

E_86 constant EBCDICCHARACTER:=T

E_87 constant EBCDICCHARACTER:=''

E_88 constant EBCDICCHARACTER:=W

E_89 constant EBODICCHARACTER:=T

E_91 :constant EBCDICCHARACTER := '
E_92 constant EBCDICCHARACTER:= W;C
E_93 constant EBCDICCHARACTER .= T;,
E_94 constant EBCDZCCHARACTER: 'm'

E_95 constant EBCDICCHARLACTER: W;

E_96 constant EBCDICCHARACTER:=V

E_97 constant EBCDICCHARACTER: =p'

E_98 constant EBC'DICCHARACTER: 'q';

E_99 constant EBCDICCHARACTER :='Y

EAl constant EBCDICCHARACTER:
EA2 constant EBCDICCHARACTER: Y;'
HA3 constant EBCDICCHARACTER :='t';

EA4 constant EBCDICCHARACTER: V;
EAS constant EBCDICCHARACTER: V;

HA6 constant EBCDICCHARACTER: -w'

EA7 constant EBCDICCHARACTER: Y;'

A/s ii 18.1! 370 Ada Compiler. Appendix F. Version 2.0 19

EAS~ --------- -BCI-_HAA-TR-

£ AS co'nstant EBCDICCHARACTER = z

E_AD constant EBCDICCHIARACTER =z

E BD constant E13CDICCHARACTER=

ECO constant EBCDICCHARACTER

ECO constant EBCDICCHIARACTER ''
E C2 constant EBCDIC CHIARACTER ''

EC3 constant EB3CDIC_-CHARACTER :='C';

EC4 constant EBCDICCHARACTER 'D',
EC5 constant EBCDICCHAKACTER 'E'
EC5 constant EBCDICCHARACTER 'E',
EC7 constant EBCDICCHARACTER 'F',

EC8 constant EBCDICCHARACTER 'G',
EC9 constant EBCDICCHARACTER '';

EDO constant EBCDICCHARACTER:'F

EDO constant EBCDICCHARACTER: 'T'

ED2I constant EBODICCHARACTER: '';
ED3 constant EBCDICCHARACTER:='

ED4 constant EBCDICCHARACTER:=V

ED5 constant EIBODICCHARACTER: 'M';
HD 5 constant EBCDICCHARACTER ='0';
ED73 constant EBODICCHARACTER: 'P';
ED87 constant EBCDICCHARACTER:=''
EH_ constant EBODICCHARACTER:=''

EHO constant EBCDICCHARACTER:=''

EE2 constant EBCDICCHARACTER:=T

EE3 constant EBODICCHARACTER:=''

EE4 constant EBCDICCHARACTER: 'U';
EE5 constant EBCDICCHARACTER:=''

E6E constant EBCDICCHARACTER:=''

EE7 constant EBCDICCHARACTER =';

EE8 constant EBCDICCHARACTER:=''

EEg constant EBCDICCHARACTER:=W

HFO constant EBCDICCHARACTER: '0';

EFl constant EBCDICCHARACTER: 'I';
~ fiEF2 constant EBCDICCHARACTER:- '2';

E'.cntnt4CI-HAATR W
HF3 constant EBODICCHARACTER 3;

HF4 constant EBODICCHARACTER: 46'
EF5 constant EBCDICCHARACTER:- '7';

EF7 constant EBCDICCHARACTER: W '7

EF9 constant EBCDICCHARACTER: V;

type EBCDIC_STRING is array (POSITIVE range <>) of EBCDZCCHARACTER;

function ASCIITOEBCDIC (S: STRING) return EBODIC_STRING;

-CONSTRAINT_-ERROR is raised if E_-STRING'LENGTH /= ASTRING'LENGTH;
procedure ASCIITO-EBCDIC (A_STRING in STRING;

ESTRING out EBCDIC_STRING);

S A Isis IBM 370 Ada Compiler. Appendix F. V-ersion 2.0 20

fucti: EBC(I)IC _TO-_ASCII (S EBCDIC _STING\r) ;et--!rn STVINC,

- CONSTRAINTERROR is raised if E_STRING'LEN(;T1 - ASTRING 'IENGTII,

pr -ce hre EDC(DIC TO ASCII (E_STRING in EBCDIC _ STRIN,;,

A _STRING -out STRING),

end EBCDIC,

The procedures ASCIITOEBCDIC and EBCDICTOASCII are much more
effic:ient than the corresponding functions, as they do not make use Of' the program
hoeip. Note that if' the in and out string parameters are of different len..ths (i.e.
A SVRING'LENGTI I 7= E__ STRING'LENGT-H., the procedures %k ill raise the
exception CONSTRAINTERROR.

8.4 Package OSENV

The implementation-defined package OS__ ENV' enables an Ada program to
communicate with the environment in which it is executed.

The specification of this package is as follows:

packasge OSENV is

subtype EXITSTATUS is INTEGER;

function ARGLINE return STRING;

procedure ARG _LINE (LINE :out STRING;
LAST: out NATURAL);

function ARGSTART return NATURAL;

procedure SETEXIT STATUS (STATUS: in EXITSTATUS);

procedure ABORTPROGR-AM (STATUS :in EXITSTATUS);

end OSENN',

The exit status of the program (returned in register 15 on exit) can be set by a call
of SETEXITSTATUS. Subsequent calls of SET__EXIT_-STATUS will overwrite
th-e exit status which is by defiult 0. If SET__EXIT__S§TATUS is not called, 3
positive exit code may be set by the Ada Run-Time Executive if an unhandled
exzzpzion is propagazed cut of the main subprogram, or if a deadlock situation is
de-t ec -, -

The following exit codes relate to unhandled exceptions:

Exception Code Cause of exception

NUNIERICERROR:
I divide by zero

Asv Ift 370 4da Cornipt/er. Appendix F. iVersion 2.0 2

%

numeric o erflow
CO\STR -\INT ERROR:

3 discriminant error
4 loxker bound index error
5 upper bound index error
6 length error
7 lower bound range error
8 upper bound range error
9 null access value

STORAGEERROR:
10 frame overflow

(overflow on subprogram entry)
II stack overflow

(overflow otherwise)
12 heap overflow

PROGRAMERROR:
13 access before elaboration
14 function left without return

SPURIOUSERROR:
15-20 <an erroneous program>

NUMERIC ERROR 21 (other than for the above reasons)
CONSTRAINTERROR 22 (other than for the above reasons)

23-24 <unused>
25 static exception

(any exception raised as the
result of a raise statement)

Code 100 is used if a deadlocking situation is detected and the program is aborted as
a result.

Codes 1000-1999 are used to indicate other anomalous conditions in the initialisation
of the program, messages concerning which are displayed on the terminal.

9 Characteristics of Numeric Types

9.1 Integer Types

The ranges of va}ues for integer types declared inr package STANDARD are as
follows:

SHORT INTEGER -32768 .. 32767 -- 2**15 - I

INTEGER -2147483648 .. 2147483647 -- 2 **31 - I

For the packages DIRECT1 and TEXT_10, the ranges of values for types
COUNT and POSITIVECOUNT are as follows:

,41s', IB.1! 370 4da Compiler. Appendix F, Ver.sion 2.0 22

!one

((t1 \I 1 214-4830-- *I-I

P('WI I I\ f V I- 1 21l448104- 1

I :, -he p.t,:k a ve TE \T __10. the range of \alues for the type FIELD is as follows:

F1 FL D . -S

9.2 Floating Point Ti pe Attributes

SHORTFLOAT

DIGITS 6
MANTISSA 21
E, NIA X 84
EPSILON 2.0 **-20

SMNIALL 2.0 **-85

LARGE 2.0 **84 * (1.0 - 2.0 --'-21)
SAFEEMAX 252
SAF ESMALL 2.0 **-253

SAFELARGE 2.0 *127 * (1.0 - 2.0 **-21)

FIRST -2.0 ** 252 * (1.0 - 2.0 **-24)

LAST 2.0 ** 252 *(1.0 - 2.0 **-24)

MACHINE RADIX 16
MIACHINEMANTISSA 6
MACHINEEMAX 63
MACHINE EMIN -64
M~NACHINE ROUNDS FALSE
MACH-lINEOVER FLOWS TRUE
SIZE 32

FLOAT

DIGITS 15
MIA NTISSA 51
E NIAX 204
EPSILON 2. 0 **-50

SM A L L .2.0 **-205

LARGE 2 0 **204 * (1.0 - 2.0 **-51)

SAFEEMAX 252
SAFESMALL 21.0 **-253

SA~FELARGE 2.0 .*252 *(1.0 - 2.0 51)
FIRST -2.0 **252* (1.0 -2.0 **-56)

LAST 2.0 ** 252 *(1.0 - 2.0 **-56)

MACHINERADIX 16
MACHINE MANTISSA 14

4MACHINEEMAX 63
MACHINE EMIN -64
MACHINEROUNDS FALSE

.4lsvs 18.1f 370,Ada Compiler. A4ppendix F. Ver.siofl 2.0 2 3

MACHINE OVERFLOWS TRUE
SIZE 64

LONG_FLOAT

DIG ITS 18
.MANTISSA 61
EMAX 244
EPSILON 2.0 ** -60
SMALL 2.0 ** -245
LARGE 2.0 ** 244 * (1.0 - 2.0 ** -61'
SAFE _ EMAX 252
SAFE SMALL 2.0 -253
SAFE LARGE 2.0 252 * (1.0 - 2.0"* -61)
FIRST -2.0 ** 252 * (1.0 - 2.0 ** -112)
LAST 2.0 ** 252 * (1.0 - 2.0 ** -112)
MACHINE RADIX 16
MACHINE MANTISSA 28
MACHINE EMAX 63
MACHINEEMIN -64
MACHINE ROUNDS FALSE
MACHINEOVERFLOWS TRUE
SIZE 128

9.3 Attributes of Type DURATION

DURATION'DELTA 2.0 ** -14
DURATION'SMALL 2.0 ** - 14
DURATION'LARGE 131072.0
DURATION'FIRST -86400.0
DURATION'LAST 86400.0

10 Other Implementation-Dependent Characteristics

10.1 Characteristics of the Heap

All objects created by allocators go into the heap. Also, portions of the Ada Run-
Time Executives representation of task objects, including the task stacks, are
allocated in the neap.

All objects whose visibility is linked to a subprogram or block have their storage
reclaimed at exit.

Use of UNCHECKEDDEALLOCATION on a task object may lead to
unpredictable results.

Alsys IBMf 370 Ada Compiler, Appendix F, V'ersion 2.0 24

10.2 Characteristics of Tasks

The default task staick size is lo Kbvtes. but by using the Binder option TASK the
size for all task stacks in a program may be set to any size from 4 Kbytes to 16
NIb\ 'es.

Timeslicing is implemented for task scheduling. The default time slice is 1000
nmilliseconds. but by using the Binder option SLICE the time slice may be set to any

period of 10 milliseconds or more. It is also possible to use this option to specify no
timeslicing, i.e. tasks are scheduled only at explicit synchronisation points.
Timeslicing is started only upon activation of the first task in the program, so the
SLICE option has no effect for sequential programs.

Normal priority rules are followed for preemption, where PRIORITY values run in
the range I .. 10. All tasks with "undefined" priority (no pragma PRIORITY) are
considered to have a priority of 0.

The minimum timeable delay is 10 milliseconds.

The maximum number of active tasks is limited only by memory usage. Tasks
release their storage allocation as soon as they have terminated.

The acceptor of a rendezvous executes the accept body code in its own stack. A
rendezvous with an empty accept body (e.g. for synchronisation) does not cause a
context switch.

The main program waits for completion of all tasks dependent on library packages
before terminating. Such tasks may select a terminate alternai;e only after
completion of the main program.

Abnormal completion of an aborted task takes place immediately, except when the
abnormal task is the caller of an entry that is engaged in a rendezvous. Any such
task becomes abnormally completed as soon as the rendezvous is completed.

If a global deadlock situation arises because every task (including the main program)
is waiting for another task, the program is aborted and the state of all tasks is
displayed.

10.3 Dc-:aition of a Main Program

A main program must be a non-generic, parameterless, library procedure.

10.4 Ordering of Compilation Units

The Alsys IBM 370 Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language. However, if a generic unit is
instantiated during a compilation, its body must be compiled prior to the completion
of that compilation [10.3].

A.4s1s B.1! 370 Ada Compiler. Appendix F, Version 2.0 25

11 Limitations

11.1 Compiler Limitations

, The maximum identifier length is 255 characters.

0 The maximum line length is 255 characters.

a The maximum number of unique identifiers per compilation unit is 1500.

N The maximum number of compilation units in a library is 1023.

" The maximum number of subunits per compilation unit is 100.

, a The maximum size of the generated code for a single program unit
(subprogram or task body) is 128 Kbytes.

0 There is no limit (apart from machine addressing range) on the size of

the generated code for a single compilation unit.

0 There is no limit (apart from machine addressing range) on the size of a
single array or record object.

2 The maximum size of a single stack frame is 64 Kbytes including the
data for inner package subunits which is "unnested" to the parent frame.

M The maximum amount of data in the global data area of a single
compilation unit is 64 Kbytes, including compiler-generated data.

J

Sit

Alsvs IBM 370 Ada Compiler. Appendix F, l'ersion 2.0 26

4aa

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are identified by

. names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

NAME AND MEANING VALUE

$BIG IDl A A!
Identifier the size of the I ---- I
maximum input line length 254 characters
with varying last character.

$BIGID2 A.. .A2
Identifier the size of the I ---- I
maximum input line length 254 characters
with varying last character.

$BIG ID3 A A3A A
Identifier the size of the I ---- I I ---- I
maximum input line length 127 127 characters
with varying middle character.

$BIG ID4 A A4A A
Identifier the size of the I ---- I I ---- I
maximum input line length 127 127 characters
with varying middle character.

p.

$BIG INT LIT 0 0298
An integer literal of value 298 1 ---- I
with enough leading zeroes so 252 characters
that is is the size of the
maximum line length.

$BIG REAL LIT 0 069.OEI
A real literal that can be I ---- I

* either of floating- or fixed- 249 characters
point type, has value of 690.0,
and has enough leading zeroes to
be the size of the maximum line
length.

C-1

6

TEST PARAMETER

NAME AND MEANING VALUE

$BLANKS 235 blanks
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNTLAST 2_147_483_647
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

SEXTENDED ASCII CHARS "abcdefhgijklmnopqrstuvwxyz
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 255
A universal integer literal
whose value is TEXTIO.FIELD'LAST

$FILE NAMEWITHBADCHARS T??????? LISTING Al
An illegal external file name
that either contains invalid
characters or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR TOOLONGNAME LISTING Al
An external file name that
either contains a wild card
character or is too long if no
wild card characters exists.

$GREATER THAN DURATION 100_000.0
A universal real value that lies
between DTIRATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in in the range of
DURATION.

$GREATER THAN DURATION BASE LAST 10_000_000.0

The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

$ILLEGAL EXTERNAL FILE NAME1 T???????
An illegal external file name.

C-2

4

TEST PARAMETERS

NAME AND MEANING VALUE

$ILLEGAL EXTERNAL FILE NAME2 TOOLONGNAME LISTING Al
An illegal external file name
that is different from
$ILLEGALEXTERNALFILENAMEl.

$INTEGER FIRST -2 147_483_648
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER LAST 2_147_483_647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESSTHANDURATION -100_000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of DURATION.

$LESS THAN DURATION BASE FIRST -10 000_000.0
The universal real value that is
less than DURATION'BASE'FIRST, if
such a value exists.

$MAX DIGITS 18
The universal integer literal
whose value is the maximum digits
supported for floating-point types.

$MAX IN LEN 255
The universal integer literal
whose value is the maximum input
line length permitted by the

*implementation.

$MAXINT 2_147_483_647
The universal integer literal
whose value is SYSTEM.MAX_INT.

$NAME NO SUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONG FLOAT, or LONGINTEGER if
one exists, otherwise any
undefined name.

C-3

LIM1111

TEST PARAMETERS

NAME AND MEANING VALUE

$NEG BASED INT 8#20000000000#
A Eased integer literal whose
highest order non-zero bit falls
in the sign bit position of the
representation for SYSTEM.MAXINT.

$NON ASCII CHAR TYPE (NONNULL)
An enumerated type definition for
a character type whose literals
are the identifier NON NULL and
all non ASCII characters with
printable graphics.

.pC-4

.p.

Ad

I

-y

C-

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 19 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of
the form "AI-ddddd" is to an Ada Commentary.

. C32114A: An unterminated string literal occurs at line 62.

" B33203C: The reserved word "IS" is misspelled at line 45.

" C34018A: The call of function G at line 114 is ambigucus in
the presence of implicit conversions.

" C35904A: The elaboration of subtype declarations SFX3 and
SFX4 may raise NUMERIC ERROR instead of CONSTRAINT_

ERROR as expected in the test.

B37401A: The object declarations at lines 126 through 135
follow subprogram bodies declared in the same
declarative part.

• C41404A: The values of 'LAST and 'LENGTH are incorrect in
the if statements from line 74 to the end of the
test.

B45116A: ARRPRIBL 1 and ARRPRIBL 2 are initialized with a
Svalue of the wrong type--PRIBOOLTYPE instead of

ARRPRIBCOLTYPE--at line 41.

" C48008A: The assumption that evaluation of detault initial
values occurs when an exception is raised by an
allocator is incorrect according to AI-00397.

" B49006A: Object declarations at lines 41 and 50 are
terminated incorrectly with colons, and end case;

,Oh is missing from line 42.

B4AO10C: The object declaration in line 18 follows a
subprogram body of the same declarative part.

D-1

%

WITHDRAWN TESTS

B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

" C87B50A: The call of "1/=" at line 31 requires a use clause
for package A.

" C92005A: The "1/=" for type PACK.BIG INT at line 40 is not
visible without a use clause for the package PACK.

• C940ACA: The assumption that allocated task TTI will run
prior to the main program, and thus assign SPYNUMB
the value checked for by the main program, is
erroneous.

" CA3005A..D: No valid elaboration order exists for these tests.
(4 tests)

" BC3204C: The body of BC3204C0 is missing.

1-

D-2

10

AID

f/c
w ...1

"3 3 3 U W U U: . -

